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Abstract 

It  is shown that,  close to the origin, the correlat ion 
function [y(r)] of  any N-component  sample with 
interfaces made up of  planar  facets is always a 
third-degree polynomial  in r. Hence, the only mono-  
tonically decreasing terms present in the asymptot ic  
expansion of  the relevant small-angle scattered inten- 
sity are the Porod  [ - 2 y ' ( 0 + ) / h  4] and the Ki rs te -  
Porod  [4')(3)(0 +)/h 6] contributions.  The latter contri- 
but ion is non-zero owing to the contr ibut ions arising 
from each vertex of  the interphase surfaces. The 
general vertex contr ibut ion is evaluated in closed 
form and the )'(3)(0+) values relevant to the regular 
polyhedra  are reported. 

I. Introduction 

In the theory of  small-angle scattering (SAS), 
samples are generally modelled as consisting of  N 
homogeneous  phases, each characterized by  a con- 
stant electron or scattering-length-density value ni 
and by the occupied sample subregion Vi, i = 1, ..., 
N. The s tandard  normalized scattered intensity I(h) 
(Porod,  1982) is the Four ier  t ransform of y(r), the 
so-called sample correlat ion function (CF). For  iso- 
tropic samples, these quantit ies depend, respectively, 
only on h and r and are related by 

I(h) = (4~rV(r/2)/h)7 ry(r) sin (hr)dr, (1.1) 
0 
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where* 

)'(r) = 1 -  2 [(ni- nj)21(rl2)]pu(r), (1.2) 
l < i < j < N  

Pq(r) = (1/4rrV)fdt3 f dv'pi(r')pj(r' + r(~), (1.3) 
R 3 

(n:) = 2 (ni- (n)):4,i 
l < i < N  

= E ( n i -  nj)2ckiCbj. (1.4) 
1 < i < j < N  

It should be noted that  (1.2) and (1.3) do not  require 
that  interfaces are convex and that  the sample is 
dilute. However,  when the conditions are fulfilled, 
the second derivative of  y(r), denoted y(2)(r) or  
y"( r ) ,  coincides with Porod ' s  intersect distr ibution 
function. According to a general theorem on Four ier  
t ransforms (Erdrlyi,  1956), the behaviour  of  I(h) at 
large h is related to the behaviour  of  the y(r) deriva- 
tives [7@)(0, n =  1, 2, ...] a round  the origin and 
around those r values, denoted 6t (l = 1, ..., M), 

* The meanings of the symbols involved in these equations are 
as follows: h - (4rr/A)sin(O/2) with 0 and A respectively denoting 
the scattering angle and the beam-particle wavelength; V is the 
sample volume; ~b, - V,N is the volume fraction of the ith phase; 
p/(r) is defined as being equal to unity when the tip of the position 
vector r falls inside region V, and equal to zero elsewhere, and & is 
a unit vector that can assume all possible orientations. The bold 
capital symbols V and V~ should not be confused with vectors, 
which are always denoted by bold small capitals or, when they are 
unit vectors, by greek letters with carets. 
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where the y~")(r)'s become singular. More precisely, 
the Erd+lyi theorem requires that, as r---, 6F, y(r) 
behaves as ~ T r - ~ l  l+"' or as ~ F r - ~ l  l+~'x 
In(Jr - ~t[) (Jones & Kline, 1958), with a~ _> 0. Under 
these conditions, from (1.1), it asymptotically results 
that (Wu & Schmidt, 1974) 

i(h) = [I(h)/47rV( r12)] 

= X ~t  cos (hSt + ~ot)/h 4 + at, (1.5) 
l 

where ~t  and ~0t are simply related to ~t  + and 5 7 .  
Equation (1.5) shows that the monotonically 
decreasing terms are related to the behaviour of the 
CF derivatives at the origin (i.e. 6t = 0), while the 
damped oscillatory ones depend on the CF derivative 
behaviours around the non-null 8t's. Showing that 
sample correlation functions have singular be- 
haviours and relating the ~ F  and the q~t values to 
the appropriate geometrical features of interfaces are 
not easy tasks. Indeed, since the pioneering results by 
Debye & Bueche (1949), Wilson (1949) and Porod 
(1951), the understanding of these issues has con- 
tinuously progressed as is testified by the number of 
papers published over the past decades. [For a recent 
review see Ciccariello (1993a).] 

The present paper illustrates a further relation 
existing between the y(")(0 +) values and the geomet- 
rical shape of the interface. More definitely, it is 
shown that: when the interface consists o f  planar 
facets, all the y(")(0 +)'s with n >- 4 are null, y(3)(0 +) is 
the sum of  the contributions owed to each vertex of  the 
interface and each vertex contribution has a closed- 
form expression dependent only on the angles between 
the edges entering the vertex. The first part gen- 
eralizes the property that all the even derivatives of 
the CF are null at the origin [i.e. y(2m)(0+) = 0, m = 
1, 2, 3, ...] when the interfaces are quite smooth 
(Porod, 1967; Wu & Schmidt, 1971; Ciccariello, 
1993c) to interfaces with singularities consisting of 
linear edges and vertices. The second part is the 
general solution of the problem (Sobry, Ledent & 
Fontaine, 1991): to determine the contributions of 
the singular points of the interface that, added to the 
Kirste-Porod formula (Kirste & Porod, 1962), yield 
the exact y~3)(0 +) value. For two-component 
samples, Kirste & Porod's formula is 

3{'/4V~bl q~2 ~- (1/16V~bl~b2)f dS(3H 2 -  KG) 
s 

= y~3)(0+), (1 .6)  

where H and Ko denote the mean and the Gaussian 
curvature of the interface. The smoothness of the 

* It is also noted that, if one assumes that r is in the range 
[ - 0 o ,  + o0 ] and then one sets 9,(r)--0 in the range r < 0, the 
value r = 0 becomes a point where the extended 9,(r) is discontin- 
uous. Thus, the origin can be handled as one of the 8t's just 
defined. 

interfaces is a necessary condition for the left-hand 
side (1.h.s.) of (1.6) to be equal to the right-hand side 
(r.h.s.). Sobry et al. (1991) remarked that for right 
prisms the correct '~(3)(0+) value (Mrring & 
Tchoubar, 1968) is simply obtained by assigning to 
each vertex a contribution that was explicitly 
determined (see also Sobry, Fontaine & Ledent, 
1994) for vertices with three entering edges and such 
that two of the three angles formed by the entering 
edges are equal to rr/2. In this way, Sobry, Fontaine 
& Ledent essentially conjectured that the exact 
~3)(0+) value can be obtained by adding to the 
Kirste-Porod value the contributions arising from 
the singularities of the interfaces. Although the 
expressions of the contributions due to a general 
curvilinear edge and to a general contact point are 
still unknown, the analyses recently undertaken 
(Ciccariello, 1993a,b; Diez & Sobry, 1993) strongly 
support this conjecture.* Thus, provided the Kirst- 
Porod integral exists and is finite, 

4V~bl~b2y~3)(0+) = 9 = ~ +  Y, (1.7) 

where Y is related to the singularities of the inter- 
face. The quantity on the 1.h.s. as well as ~ and J 
is dimensionless and therefore invariant under scale 
transformations. 

Moreover, 3 is proportional to the angular aver- 
age of the 'rotundity' parameter (Wilson, 1969) and 
is termed roundness. Similarly, Jd-, related to the 
principal curvatures of the interface, is termed cur- 
vosity. Finally, Y, related both to vertices and to the 
(curvilinear) edges of the interface, is termed sharp- 
ness. In this way, (1.7) is equivalent to the statement 
that the roundness of  a surface is the sum of  its 
curvosity and its sharpness. 

When interfaces have a very arbitrary shape or are 
related to a very polydisperse sample, it appears 
reasonable to assume that the sum of the oscillatory 
contributions, present on the r.h.s, of (1.5), averages 
to zero owing to their large number.I" In these cases, 
the above statement implies that the intensities scat- 
tered by samples whose interfaces consist of planar 

* It should also be noted that the results obtained by Cic- 
cariello, Cocco, Benedetti & Enzo (1981) and by Ciccariello & 
Benedetti (1982) for the y~2)(0÷) value indicate that the smooth- 
interface value y~2)(0+)= 0 must be corrected for possible singu- 
larities of the interface and that the correct value is simply 
obtained by summing up the 'corrections' owed to the interface 
singularities. Moreover, the non-null contributions to y~2)(0÷) 
come from edges and contact points only. 

t It must be stressed that caution is required in accepting this 
approximation. In fact, the analysis of the deviations (from a 
constant behaviour), observed in the Porod plots of the intensities 
scattered by some demixing glass samples as well as by some 
coated porous silica samples, yielded quite interesting and consist- 
ent information on the microscopic texture of the samples 
(Benedetti, CiccarieUo & Fagherazzi, 1988; Benedetti & 
Ciccariello, 1994). 
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facets, asymptotically, are always given by 

i(h) =- l(h)/47rV( rl 2} 

-~ - [2)/(0+)/h 4] + [4"g(a)(0+)/h6]. (1.8) 

The first contribution on the r.h.s, side is the well 
known Porod term (Porod, 1951; Debye, Anderson 
& Brumberger, 1957), while the second contribution, 
owing to the fact that the curvosity of planar inter- 
faces is null [see (1.6)], is determined by the interface 
sharpness. 

The paper is organized as follows: §II shows that 
y(r) is a third-degree r polynomial, provided r is 
sufficiently small; §III shows that y(3)(0+) is the sum 
of the contributions owed to each vertex of the 
interface and reports the closed-form expression of 
these contributions; §IV illustrates the application of 
the result to the case of the regular polyhedra. Most 
of the details on the mathematical manipulations are 
contained in Appendices A and B.* 

H. General asymptotic expression 

The main assumption is (i) that the sample interface 
consists of planar facets; for simplicity, the analysis 
is carded out with the further assumption that (ii) 
the sample comprises only two phases. In §IV, it is 
briefly discussed how to remove the second assump- 
tion and how to make the first weaker. Assumption 
(ii), (1.2) and (1.4) imply that 

~/ ' (r) - 1 - P'{2(r)/ ~bl ~b2, (2.1) 

while (i) implies that the interface singularities are 
only vertices and edges. First, it must be shown that 
these singularities do not prevent y '"(0 +) existing. 
With this aim, owing to (2.1), it is sufficient to prove 
that, at small r's, P['2(r) can be expanded through the 
term linear in r. The following analysis will show 
that, close to the origin, P'{2(r) is a linear function of 
r. This result implies that all the y(")(r)'s, with n _> 4, 
are equal to zero, so that the first part of the 
statement is proved. Moreover, if it is assumed that 
oscillatory contributions can be neglected, (1.8) 
becomes exact. Otherwise the appropriate oscillatory 
contributions must be added to (1.8). Finally, the 
sought-for y '"(0 ÷) value comes immediately from 
(2.1) once the coefficient in front of r has been 
determined in the P'l'2(r) expression. 

The required small-r expansion of y(r) can be 
obtained starting from the P~'2(r) integral expression 
obtained by Ciccariello et al. (1981), namely 

P]'E(r) = - (47rV)- ' f d a~ 3(2)(¢5,r), (2.2a) 

* Appendix B has been deposited with the IUCr (Reference: 
LI0175). Copies may be obtained through The Managing Editor, 
International Union of Crystallography, 5 Abbey Square, Chester 
CH1 2HU, England. 

where 

~(2)(&,r) = f dS~ f dSE(a, • ¢~)(&2 " &) 
s~ s 2 

x 3(rl + r& - r2). (2.2b) 

Integral (2.2a) expresses P~'2(r) as the average, per- 
formed over all the possible directions of ~, of the 
quantity ~2)(&,r) defined by integral (2.2b). This 
integral is performed over S1 and $2, i.e. the bounda- 
ries of phases 1 and 2, while &~ is the unit vector 
pointing outward to phase 1 and orthogonal to $1 at 
point r 1 where dS~ is located. &2 and r2 are similarly 
defined. It is also noted that assumption (ii) implies 
that S 1 = S 2 and that &l = - o '2  at each point of the 
interface. Finally, 5(r) denotes Dirac's function. In 
(2.2b), this function requires that dS2 and dS1 a re  at 
a relative distance r along the direction &. Because 
the interface consists of planar facets, S1 = t-JtSt 
where St denotes the lth facet of the sample interface. 
According to (2.2b), ~(2)(¢~,r)  is equal to the sum of 
the values obtained from (2.2b) by identifying Sx and 
$2 with all possible pairs of facets. Thus, 

where 

g(2)(&,r) = Y. ~ ) ( a , r ) ,  (2.3) 
i ,t  

#~/,~)(a~,r) = ~dS,~dS2(O,- tf)(Ot" rS) 
S,. St 

X 5(rl + r~ - r2). (2.4) 

However: (a) when the facet pair involves the same 
facet, integral (2.4) is null because tS, lying in the 
facets' plane, is orthogonal to &i as well as to &t; (b) 
when the pair involves two facets that have no point 
in common, the facets will be separated by a finite 
distance, say D, and when r < D, no Si subset is r 
apart from St and integral (2.4) vanishes owing to the 
presence of Dirac's function; (c) therefore, at suffi- 
ciently small r's, only the pairs of facets, which have 
in common either one edge or one vertex, can make 
P~'2(r) ~ O. The second of these configurations can be 
obtained by considering a configuration of the first 
kind (i.e. two facets meeting along a 'finite' edge, 
where 'finite' means that the length of the edge is 
different from zero), and then by letting the edge 
shrink to a point. For this reason, the case depicted 

D 

in Fig. 1, where the two facets ($1 and $2) share the 
finite edge VV' ,  is analysed first. In order to evaluate 
the relevant ~2.)2(&,r) contribution, it is convenient 
to introduce two Cartesian coordinate systems: Vxyz 
and V X Y Z  (see Fig. 1). Axes z and Z coincide with 
the common edge VV'.  Coinciding axes x and X are 
orthogonal to VV'  and fie on the $1 half-plane. 
System Vxyz is orthogonal, while system V X Y Z  is 
only Cartesian because axis Y, orthogonal to z = Z, 
lies in the half-plane containing facet $2. For each 
vertex, say V, the relevant edges will be oriented as 
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coming out  f rom V and will be denoted l l , /2  and/3 ,  
depending on whether  they lie on Sa, $2 or the 
c o m m o n  edge. Moreover ,  the angles that  l~ and 12 
form with the third (common)  edge /3 = z = Z and 
the angle that  ll makes  with /2 will be respectively 
denoted y2, yl and Y3. The dihedral  angles formed 
by the pairs of  planes [(11,/3), (/2,/3)], [(/1,/2), (13,12)] 
and [(13,ll), (/2,ll)] are denoted a3, O~ 2 and O~ 1 . With 
these angles so defined, the constraints  

0_<y~_<Tr, 0_<ai_<Tr,  i = 1 , 2 , 3  (2.5) 

are applicable. Later,  it will be useful to look at the 
y{s as the sides of  a spherical triangle and at the a{s  
as the corresponding angles (see Fig. 2). It  is also 
noted that  the dihedral  angles a~ are related to the 
edge angles yg by the relation [see (4.3.19) of  
Abramowi tz  & Stegun, 1972] 

cos yt = cos y~ cos yj- + sin y~ sin yj cos O~l, (2.6) 

where i, j ,  l is any  cyclic permuta t ion  of  1, 2, 3. I t  is 
also convenient  to set 

c i -  cot yi, i = 1, 2, 3. (2.7) 

' ' (i = 1 2, 3) are similarly Quanti t ies c~, li, y~ and tz~ 
defined (see Fig. 1). In particular,  it should be noted  
that  l~ and 13 have opposite directions. By param-  
eterization of  the points of  $1 and $2 in terms of  the 
V X Y Z  coordinate  system, the integrat ion domains,  

Fig. 1. Typical configuration of two planar facets, $1 and 52, 
meeting along a non-null edge (VV'). 11, 13 and l~ are the sides of 
$1 nearest to the edge. In the definition of the angles y~, 3'2 and 
Y3, the edges ll,/2 and 13 = VV', meeting at V, are oriented away 
from V. Axes x and X coincide. They lie on the $1 half-plane 
and are orthogonal to z = Z = 13. Axis y is orthogonal to x and 
z, while axis Y is orthogonal to z and lies on the $2 half-plane. 
Phase 1 (2) fills in the region below (above) $1 and on the left 
(fight) of 52. Thus, at point PI, the unit vector &t is parallel to 
y, while at point/2, as shown, &2 points towards the bottom 
left of 32. 

related to the presence of  edges li and  l~, can easily be 
handled on the r.h.s, of  (2.4). In this way, the explicit 
evaluat ion of  ~I2~(&,r), the contr ibut ion to 3(2Y(&,r) 
arising f rom facet pair  (i,2), becomes quite easy. 
(Note that  the overbar  over a numerical  index value 
indicates the facet labelled by that  value.) With  
reference to Appendix  A for the detailed reduct ion of  
(1.4), the final result  is either 

~,~222(&,r) = ei,~(~)[Li,~ - r(~//~+ ~ ' ) ]  (2.8a) 

or 

~{222(&,r) = - r e i , ~ ( g 0 ) ( ~ P +  ~ / " ) O ( - ~ " -  7//"), 
(2.8b) 

depending on whether_ L__I,:, the length of  the edge 
between facets $1 and $2, is different or equal  to 
zero, respectively. The remaining quantit ies* ~ ,  ~/"  
and ei,~ are defined as follows: 

~ / '=  ~r(yl,'Y2, re3; t~ ) 

=-- max[(c2tOy/Sintx3) - tOz, Cl(O)y cot t ~  3 - -  O . ) x ) ] ,  

(2.9a) 
t f P . ^  

= ~ "  (,yl,,Y2,a3,to) 

-- ~/(yi,y~,tz3;tOx, tOy,- to,), (2.9b) 

ei,~(&) = (&i" &)(&~" &)O(&i" &)O(&:" &)/sin a3. 
(2.10) 

Here, O(x)  denotes the Heaviside step funct ion 
defined as being equal  to one on the positive axis and 
zero elsewhere. 

The first consequence of  (2.8a) and (2.8b) is that  
~2~2(~,r), whatever  the length of  the edge, is exactly 
linear with respect to r, when r is sufficiently small. 

* In order to avoid cumbersome notation, ~/'and V//-' do not 
have the indices characterizing the facet pair. Strictly speaking, for 
each pair of facets, the introduction of ~/-and ~//" implies that the 
considered facets are identified with those of Fig. 1. In this way, a 
suitable relabelling of angles has to be undertaken. 

Fig. 2. A~A2A3 is the spherical triangle associated with edges Ii, 12 
and 13 shown in Fig. 1. Its sides Yl, 3'2 and Y3 are the angles 
between the edges 12 and 13, 11 and 13, 1~ and 12. Its angles ai, i = 
1, 2, 3, are the dihedral angles formed by the plane (It,12) with 
(11,13), by (12,10 with (/2,/3), and by (13,10 with (13,12), respectively. 
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[The precise meaning of this locution will be 
evident from the ~ ( & , r )  evaluation reported in 
Appendix A.] Since ~2)(tS,r) is a sum of contri- 

• ( 2  , ,  • • buttons ~lXto,r) [see (2.3)], the lmeanty property 
also holds true for ~2)(&,r) and, by (2.2a) and 
(2.1), for P~2)(r) and y(2)(r). It is concluded that 

y(")(O+)=O, n = 4 ,  5, 6, ..., (2.11) 

when interfaces are made up of planar facets. This 
proves the statement that the asymptotic expansion 
of I(h) contains the only two monotonically decreas- 
ing terms reported on the r.h.s, of (1.8).* Equations 
(2.8a,b), evaluated at r = 0 ÷, give 

~.~)(&,0 +) = eu(£o)L u, (2.12) 

while (2.3), (2.10), (2.2a) and (2.1) yield 

y"(O +) = (1/47rV~bx~b2) Y'. L u f eu(~o)dt~. (2.13) 
i , l  

The integral is easily evaluated and the result, first 
obtained by Ciccariello et al. (1981), shows that 
y(2)(0+) is the sum of the contributions arising from 
each edge of the sample interface. Moreover, result 
(2.13) also holds true when edges are curvilinear and 
surfaces are no longer planar. 

Eli. General vertex contribution 

Two further consequences can be drawn from (2.8a) 
and (2.8b), namely: (re) y~3)(0+) can be expressed as a 
sum of contributions each orginating from a vertex 
of the interface and (fl) each of these contributions 
can be explicitly written down in terms of the angles 
between the edges entering the considered vertex. 

Thus, one must evaluate the r derivatives of con- 
tributions (2.8a) and (2.8b), remembering that these 
are related to facet pair (1,2) when the facets meet 
along a finite or a null-length edge, respectively. As 
r----0 ÷, is is found that 

~3~ ,, + 2 ,, ~9~1.2(to,0 ) = d~,~(to,r)/dr~=o+ 

or  

where 

= [ ~3;(r,~)(&) + ~;(T,~)(&)] (3.1) 

~3,~@,,0+) = ~4;g,:)(~), 

g'a;(T,~)(&) = -- eT,~(&) ~ ,  

(3.2) 

(3.3a) 

* This result is of some relevance to wide-angle X-ray scattering. 
It implies that, aside from oscillatory deviations, the decrease of 
the peak profiles, in the ideal cases where sample particles can be 
depicted as homogeneous regions with planar boundaries, is given 
by the sum A / h  2 + B /h  a w i t h  A and B related, respectively, to the 
projected surface and to the 'rotundity' of the crystallites (Wilson, 
1949, 1969, 1970; Ciccariello, 1990, 1993a). 

~;(T,~)(~) --  - -  e T , ~ ( ~ )  ~ ' ,  (3.3b) 

~4;(T,~.)(6~)) ~ - - ~ , ~ ( ~ ) (  ~ P ' ~ -  ~ ' )  

x O ( - ~ / ~ -  ~/~'). (3.4) 

[Although the argument 0 + present in the functions 
on the 1.h.s. of (3.1) and (3.2) is superfluous, because 
the r derivative of g~E½(&,r) is independent of r when 
r is close to the origin, its introduction is a useful 
reminder of this condition and makes the calculation 
of y"(0 +) easier.] 

Clearly, when the edge length is null, the facets can 
meet only at a vertex, say V, of the interface. Then 
(3.2) can be considered as one of the contributions 
related to V, since it arises from one of the pairs of 
facets [i.e. (S1,$2)] that meet at V. Besides, definitions 
(2.9a), (2.9b) and (2.10) show that ~I;(T,~) depends 
only on angles that are simply related to Sl's edges: li 

- -  p 
and l'1 and to S2's edges: 12 and 12. Thus, ~e4;(r.: ) is the 
contribution arising from vertex V and from the four 
edges Ii, l[,/2 and l~. For this reason, ~4;(i,0, as it is 
specified by its first index value 4, will be generally 
referred to as a four-edge (vertex) contribution. Con- 
sider now the case of two facets meeting along a 
finite edge, say VV'. This determines two vertices of 
the interface, say V and V', and (3.1) shows that the 
contribution owed to the considered facet pairs is the 
sum of the two terms ~3;(~,~) and ~;(T,~). From (3.3), 
(2.9a) and (2.10), it appears evident that ~3;(T,~) and 
~;(T,~) depend, respectively, only on the angles 
formed by the three edges (/1, 12,/3) entering vertex V 
and on the angles formed by the edges (l~, l~, l~) 
entering vertex V'. It is concluded that contribution 
(3.1), related to a pair of facets meeting along a finite 
edge, can be expressed as a sum of three-edge (vertex) 
contributions. 

Consider now the general case. The derivative of 
(2.3), at r = 0 +, is 

, (3) ,, + 3(3)(&, 0+1 = Z g,,t(to,O 1. (3.5) 
i , l  

The prime is a reminder that the summation is 
restricted to the pairs of facets that have at least one 
point in common. Considered now a vertex V of the 
interface and consider all the different pairs of facets 
meeting at V. For each of these pairs, either the 
facets meet only at V or the facets have an edge in 
common. In the first case, the contribution that has 
to be considered on the r.h.s, of (3.5) is given by 
(3.4), in the second case, it is given by (3.3a) or 
(3.3b). Clearly, the sum present on the r.h.s, of (3.5) 
is recovered by summing the vertex contributions of 
all the facet pairs relevant to a vertex and then over 
all the vertices. In this way, ~ ( 3 ) ( ( ~ . ) , 0 + )  is expressed 
as a sum of vertex contributions. Owing to (2.2a) 
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and (2.1), the same property holds true for y(3)(0+): S~US-~ with i =  1, 2, 

7(3)(0 +) = Z(2/4'n'V~bl~b2)f [ Z ' ge3;(;ug(go) 
V t i<j 

q 
+ Z 'N4;(,,j~(go)|dgo. (3.6) 

i<j .! 
The primes now indicate that the sums are restricted 
to the only pairs of facets that meet at a given vertex, 
i.e. V~. Moreover, the internal sums involve only the 
pairs that consist of different facets because the 
factor 2 already accounts for the two possible ways 
of ordering two facets in forming a pair. Finally, no 
gc;;(~,j~ appears in (3.6) because the simple change of 
integration variable go = (gox,@,goz)--* (gox,@, - goz) = 
go' converts the previous function in g'3;(ij~. This is 
evident by comparing (2.9b) and (2.9a) and noting 
that ei,j(go) is independent of goz, &~ and ~ being 
orthogonal to z. If we now set 

~3;(i,j9 = 2 f ~ 3;(i,j)(go)d go (3.7a) 

~4;(i,j) = 2 f ~4;(i,))(go)dgo, (3.7b) 

(3.6) becomes 

T(3)(O+) = (1/47rVq~lq~2)Z [ ~ '  ~3;(i,h + ~ t ~4;(i,j) ] • 
V t i<j i<j 

(3.8) 
Since all the contributions inside the square brackets 
refer to vertex V~, their sum represents the total 
contribution of vertex Vt and property (a), stated at 
the beginning of the section, is proven. 

In order to prove property (fl), it will be sufficient 
to show that each contribution present on the r.h.s. 
of (3.8) can be evaluated in closed form. This is done 
in two steps. First, it is shown that each four-edge 
vertex contribution is a linear combination of four 
three-edge vertex contributions. Second, the closed 
expression of a three-edge vertex contribution is 
obtained. 

Fig. 3 shows a typical four-edge vertex where, for 
notational simplicity, the meeting facets are again 
characterized by indices T and 2. Facets $1 and $2 
are prolonged until they meet along a half-line, 
called [T,~. The prolonged facets are denoted Sip and 
S2p, while the facets added to the outset facets in 
order to have the prolonged ones, are respectively 
denoted $1~ and Sla. NOW, according to definition 
(2.4), imagine evaluating 

.•£2)_ ¢ ̂ , r a Ip,2p\t~,l ~ f dS 1 f dS2(&+ go)(&~'go) 
sip szp 
x t~(rl + rgo - r2), (3.9a) 

at very small r's, so that only small regions around 
vertex V will contribute to the integral. Since Sip = 

2) ^ ~x2).~p(go,r) = ~r2½Cgo,r) + ~a"+,~Cto,r) 
2) ^ + ~ll2,~(go,r) + ~i,,~(to,r). (3.9b) 

By adding and subtracting ~,~a(go,r) and observing 
that 

~2) ,, g ( 2 )  , ^ 2) ,, ~ta,~p(to,r) = Ta,~tto,r) + ~i'a,~,,(to,r), 

~2),~a(go,r) = 3~2~(go,r) + ~(2,~,,(go,r), 

from (3.9b), one obtains the result 

~222(go,r) ~2p),~p(go,r) + ~2) ^ = gla,~(to,r) 

- ~ ,~a (go , r ) -  ~-~2a),~p(&r). (3.10) 

The importance of this result stems from the fact 
that all quantities present on the r.h.s, refer to 
configurations where the meeting surfaces share an 
edge (i.e. -[~,~). Hence, by taking the derivative of 
(3.10) with respect to r and integrating with respect 
to go, one obtains the required result 

~4,(T,'2)- ~3,(Tp,'2p)-I- ~3,(la,~.+a)- ~3,(Tp,:a)-  ~3,(-fa,:p), 

(3.11) 

expressing a four-edge vertex contribution in terms 
of four three-edge vertex contributions. The edge 
triplets and the signs, correspondingly associated 
with the four-edge contribution, are (see Fig. 3) 

"~ (ll, 12, [+,~.), "Jr" (ll, 12, 7+,~), --(FI, /2, l-[,~) 
and - ( l l ,  I;, [r,~). (3.12) 

t~ 

4 

Fig. 3. The figure shows two facets (S~ and 52), which meet only at 
vertex V. When the facets are prolonged, they will intersect 
along the 'edge' [L~. Sl, shows the planar surface, which, added 
to S~, gives the prolonged facet Sip. $2,, and S2p are similarly 
defined. 
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The last task is that of obtaining the closed-form 
expression of ~;(,-j~. By the same convention 
expounded in the footnote * on p. 63 and by (3.3), 
the typical ~;(~.j~ can be written as 

"~(/"('~1,'Y2,~3) ~ ~3;(T,~) 

= - 2 J'd~eT.~(~) ~(y~, y2, a3; ~), 
(3.13) 

where a3 is the dihedral angle between the meeting 
facets and Yl and Y2 are the angles formed by edges 
/2 and ll with edge /3, intersection of the two 
(prolonged) facets. The reduction of this integral is 
rather involved. Therefore, its explicit evaluation is 
given in Appendix B.i" The final result is 

~ ( r l ,  r2, a3) 

= -A{I- (~r- y3) 
× [c3 - (2 cot a3 sin yJsin a3 sin y~ sin Y2)] 

+ 2[Cly2 + c2y~](cot aJsin a3) 

+ [Cl(rr - Y0 + c2(rr - y2)](1 + 2cot 2 tea)}. 

(3.14) 

An equivalent form is 

"~"(Yl, '~2, G~3) 

= -~{1 + 2~r[cot a3(cot y~ + cot y2)/sin a3] 

+ (Tr - yl)[COt Yl - 2(cot a3 cot a2/sin y~)] 

+ (zr - y2)[cot Y2 - 2(cot a3 cot aJs in  Y2)] 

-- (Tr -- "ya)[COt Y3 

- 2(cot a3 sinydsin y~ sin y2 sin a3)]}. (3.15) 

These results are respectively obtained by combing 
equation (B.40) or equation (B.41) with equation 
(B.6). Since the dihedral angles a~ are related to the 
edge angles y~ by relation (2.6), either the y/s or the 
ai's could be used in (3.14) and (3.15). Besides, 
~e-('yl,'Y2,tg3) t u r n s  o u t  t o  be either positive or 
negative depending on the 3'/ values. The result 
obtained by Sobry et al. (1991) is immediately re- 
covered when two of the three y/s [recall (2.6)] are 
equal to ~r/2. 

I V .  C o n c l u d i n g  r e m a r k s  

It has been shown that, in the case of two- 
component samples, planar interfaces yield CFs that, 
close to the origin, are third-degree polynomials in r. 
Hence, there is the interesting result that the relevant 
SAS intensities, asymmptotically, present only two 
monotonically decreasing terms. The first is the 
Porod contribution; the second is the Kirste-Porod 

J" See deposition footnote. 

Table 1. Roundness of  regular polyhedra 

Tetrahedron 4 3 0 - 5.285 - 1.321 0.000 
Cube 8 3 0 - 1.910 -0.239 0.000 
Dodecahedron 20 3 0 - 0.361 - 0.018 0.000 
Octahedron 6 4 2 0.626 - 0.492 0.596 
Icosahedron 12 5 5 2.337 -0.188 0.383 

The table reports the sharpness, coinciding with the roundness, of 
the regular polyhedra. [Recall that, when the sample comprises a 
single particle, defin fion (1.7) becomes ~ = 4Vpy°)(0+), because 
the quantity V~b14,2 must  be substituted for Vp, the particle 

• volume.] Moreover, ~ is the number  of  the particle vertices, 
that of  the edges entering a particle vertex or that  of  the three- 
edge contributions at a vertex and ~ is the number  of  the 
four-edge contributions per vertex. Finally, 4Vp~CP~,0..~) and 
4Vp~Cr4~.oj~, respectively, are the sums of  the three-edge and 
four-edge contributions to ~q~ owed to a particle vertex. In other 
words, they are equal to 4Vp times the first or the second sum 
inside the square brackets on the r.h.s of  (3.8). It should be noted 
that .9~ approches 2~-, the sphere value, as the number  of  the 
edges entering each vertex increases. 

contribution. This is determined by the y(3)(0+) 
value. When the sample interface contains vertices 
with only three entering edges, (3.8) and (3.14) or 
(3.15) easily allow the determination of y~3)(0+) in a 
closed form once the angles, between the edges enter- 
ing each vertex have been calculated. On the other 
hand, when the interface presents vertices with four 
or more entering edges, then, for each of these 
vertices, the relevant three-edge as well as four-edge 
contributions must be taken into account. The first 
are calculated by (3.14). The second are first 
expressed in terms of three-edge contributions by 
(3.11) and (3.12) and then explicitly calculated by 
(3.14) or (3.15). As an application, the y~3)(0+) values 
relevant to the regular polyhedra have been evalu- 
ated. Their values are reported in Table 1. 

The generalization of the previous results to the 
case of N-component samples is trivial. Appropriate 
indices for a proper book-keeping of the different 
phases have to be introduced and due attention must 
be paid to the fact that the factor 1/(4'14'2) becomes 
(n, - n92/(n2). 

Similarly to the discussion reported after (2.13), 
results (3.8) and (3.7) also hold true when the inter- 
face no longer consists of planar facets and presents 
vertices with entering edges that result from the 
intersection of curved facets. In proximity to each 
vertex, say V, each curved facet can be approximated 
by its tangent planar angle, defmed as the intersec- 
tion of the plane, tangent to the curved facet at V, 
with the lines tangent at V to the two edges delimit- 
ing the curved facet. From this point of view, (3.8) 
represents the 'correction' arising from a vertex to 
the Kirste-Porod formula. Beside this correction, 
those related to the edges, when these are curvilinear, 
and to the contact points, present only on curved 
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interfaces, should be added. So far, the edge correc- 
tions have been worked out only for some particu- 
larly simple geometries (Ciccariello, 1993a,b; Diez & 
Sobry, 1993). Therefore, the problem of determining 
the 'roundness' of an interface, i.e. its 3,(3)(0 + ) value, 
in the presence of vertices, curvilinear edges and 
contact points, requires the determination of the 
'corrections' associated with general curved edges 
and contact points to be completely solved. With 
curved interfaces, however, further monotonically 
decreasing terms will be present on the r.h.s, of (1.8). 
They are related to the y(~+~)(0 +) values with n -> 2. 
Similarly to the ¢3)(0+) expression, (1.6), the higher- 
order derivatives can also be expressed as interface 
averages of appropriate combinations of the deriva- 
tives of the parametric equations of the sample inter- 
face, provided the interface is sufficiently smooth. 
Indeed, the explicit expressions of y(5)(0+) and 
¢7)(0 +) have been reported by Wu & Schmidt (1971) 
and Ciccariello (1993¢). At this point, similarly to the 
¢2)(0+) and ¢3)(0+) cases, there is the problem of 
evaluating the 'corrections' associated with edges, 
vertices and contact points for the higher-order 
derivative values ¢")(0 +), n = 4, 5, .... Of course, the 
problem appears to be far more difficult than that 
analysed here. From a practical point of view, how- 
ever, it looks less interesting, owing to the great 
simplicity and generality of the interface analysed in 
this paper. 
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APPENDIX A 

From Fig. 1, it appears evident that the (X, Y, Z) 
and (x, y, z) coordinates are related as follows 

X = x - y cot  a3, (A.la) 

Y = y/sin a3, (A. lb) 

Z = z .  

Moreover, the equations of half-lines l~ and/2 

Yl = O, z l  = c2x,  X -> O, 

X 2 - ' O  , Z 2 = C l  Y ,  Y->0, 

while those of II and l~ are 

y; =0 ,  zi = Li,:  - c~x, x->O, 

X~=0,  z ~ = L i , ~ - c ~ Y ,  Y->O, 

(A. 1 c) 

are 

(a.2a) 

(A.2b) 

(A.3a) 
(A.3b) 

where ci and c~ are defined by (2.7) and Lr,~ denotes 
the length of edge V V ' .  According to (2.4), the 
contribution from facets $1 and $2 to ~(2)(tS,r) is 

given by 
z;(x0 

Jt2½(&,r) = (&l "&)(&2" & ) f d x ~  f d z l f d Y 2  
0 zl(x 0 0 

z;( Y9 

x f dz28(Xl + r w x -  x2) 
z2(Y9 

× 6(yl  + rtOy - y2)8(zl + rto~ - z2), 
(A.4) 

where the properties dSl = dxldzl and dS2 = d Yzdz2 
have been used. The analytical expressions of the 
integration limits are given by (A.2) and (A.3). The 
arguments of Dirac's function involve the orthogonal 
coordinates (x l ,y l , z l )  and (x2,y2,z2) of two points 

m 

lying, respectively, on S1 and Sz. The two points are 
required to be r apart. The quantity r, at the end of 
the calculations, has to go to zero. Thus, only small 
strips of $1 and $2, parallel to edge V V ' ,  will contri- 
bute to the integral. It is important to note that this 
condition becomes true once r has become smaller 
than the smallest of the two distances HT and H~, Hr 
(H~) being the distance of the $1 (Sz) facet vertex, 
which does not lie on the edge, from the plane of 
facet $2 (31). In this range of r's, the integration- 
domain upper limits, not specified in (A.4), can be set 
equal to + oo. It is now noted that the points 
belonging to $I have Yl = 0 and that the orthogonal 
coordinates of an $2 point, characterized by coordi- 
nates (0,Y2,Z2) in the system V X Y Z ,  are 
[ - -  Y 2 s i n  ( a  3 - " r r / 2 ) , Y z c o s ( a  3 - "rr/2),z2].  Thus, the 
argument yl  + r %  - Y2 of the second 8 function on 
the r.h.s, of (A.4) becomes Yl + r %  - Y2 sin a3. 
Now, the third Dirac function on the r.h.s, of (A.4) 
requires that 

z2 = zl + rtOz. (A.5a) 

For the corresponding integral to be different from 
zero, the previous value must be smaller than z~(Y2) 
and greater than z2(Y2). Similarly, the second Dirac 
function requires Y2 = rtoy, which by (A.la) and 
(A. lb), implies 

Y2 = Y2 = rtOy/sin a3, (A.5b) 

X2 = "Y2 c o s  t]l~ 3 = rtOy cot a3. (A.5c) 

By these equations and the integration bound Y2 - 0, 
(A.4) becomes 

~2½(&,r) = [(&," b)(&2" &)O(Y2)/sin a3] 

× f dx l  8(xl  + rO)x - rO)yCOt a3) 
/ 0 

z;(x0 
x f dz, O[z;(-F2) - z, - rwz] 

zdxO 

X O [ Z  1 "[- to.) z --  z2(Y2)  ]. (A.6) 
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Owing to the first O function, present inside the z~ 
integral, and to the presence of an upper integration 
limit, z, must be smaller than min[z~(Yz)-  
rtoz,z~(xO]. For similar reasons, z, must be larger 
than max [z2(Y2) - reOz,Z,(X~)]. Therefore, the 
integral with respect to z, is equal to the difference of 
the quantities just reported when the difference is 
positive, otherwise it is null. The remaining integral 
with respect to x~ is immediately performed since the 
remaining 6 function requires 

m 

x, = X~ = r(tOy cot te3 - tOx). (A.7) 

Of course, this value must be positive. It is concluded 
that 

~2½(tb,r) = ei.~-~ i.~O(-~ i,~) (A.8a) 

where 
m m 

-~ T,~ - rnin [z~(X,),z~( Y2) - rw~] 

- max [Zl(Xl),Z2(Y2) -- rWz], 

e~,~ - (&," &)(&2 • ~)O(-Fz)O(X~)/sin te3. 

(A.8b) 

(A.Sc) 

In order to obtain (2.8a) and (2.8b), the expressions 
of the min and max functions must first be simpli- 
fied. By (A.2), (A.3), (A.5) and (A.7), one finds 

min ' - -  ' - -  r 9  - ro z] 
= min [Li,~ - c]r(%/sin t e a )  - -  rtOz, 

Li,~ - c~r(% cot te3 -tOx)]. 

Since r tends to zero from the right, whatever Lr,~, 
the above quantity is equal to 

LI.~-rmax[c~(Wy/sin tea)+ tOz, c~(tOy cot  te 3 --COx) ] 

= Li,~ - r , ~ '  (A.9a) 

and definition (2.9b) is recovered. Similarly, it is 
found that 

max [zl(X3,ZE(Y2) - rWz] 

= r max [c,(Wy/sin tea) - Wz,CE(Wy cot a3 - Wx)] 

- r ~ ,  (A.9b) 

which gives definition (2.9a). By these results, (A.8b) 
becomes 

-~i,~ = Li,~ - r ( ~ / ' +  ~ r , ) .  

When the edge length is non-null, since r---, 0, .~ i,~ is 
always positive at sufficently small r's and the 
function O(-~i.~) can be neglected on the r.h.s, of 
(A.8a). However, this is not possible when the edge 
length is null. Therefore, depending on whether Li,~ 
;~ 0 or LI,~ = 0, (A.8a) can be written either as 

~]½(tS,r) = er.2CLi.2 - r(~g/'+ ~gP')]  (A.10a) 

or as 

(A.10b) 

The property that the O-function value does not 
change when its argument is multiplied by a positive 
constant has been taken into account in order to 
obtain (A.10b). By the same property, since 
sin a3 > 0, (A.8c) becomes 

= 

x O(tOy cos a3 - wx sin a3)/sin a3 

= (&~" tb)(&2 • t3)O(&, • &)O(&2 • t3)/sin a3. 
(A.11) 

[In obtaining the last equality, the properties &x = 
(0,1,0) and &2 = ( - s i n  te3, cos tea, 0) were used. See 
Fig. 1.] In this way, (2.8a), (2.8b) and (2.10) are 
proved. Moreover, from the previous analysis, it 
appears clear that (A.10a) holds true when r obeys 
the constraint r < min [Li,~,Hi,H~], where the {Hi}'S 
have been defined a few lines below (A.4) Similarly, 
(A.10b) holds true when r < min [Hi,H~]. From (2.3), 
it follows that ~(2)(t3,r) is a linear r function when 
r <min  [{.~,j},{Hi}], where {.~,j} denotes the set of 
edges that have a non-null length. When the facets 
have finite areas and the set of these values has a 
non-null lower bound, the previous minimum value 
exists and the linearity of ~(2)(tb,r) is ensured. 
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Abstract 

A new atomic electron-density function is derived by 
Fourier transformation of resolution-truncated atomic 
scattering factors. It forms the basis of a new real- 
space refinement method, RSREF, that is a substantial 
improvement on prior implementations that did not for- 
mally consider the absence of high-resolution terms in 
a typical macromolecular electron-density map. Real- 
space refinement is further improved through the simul- 
taneous refinement of stereochemical restraints analo- 
gous to reciprocal-space methods. Parallel refinements of 
a viral capsid structure show that real-space refinement 
produces models that are at least as good as those refined 
in reciprocal space, by either restrained or molecular- 
dynamics methods, and that refinement cycles are ~50 
times faster. Real-space refinement will not replace 
reciprocal-space methods for proteins, where, without 
the high noncrystaUographic symmetry of viruses, ex- 
perimental phases and electron-density maps are not of 
the same high quality. However, applied to local regions, 
it can be used to speed up and improve the quality of 
interactive model building before a full refinement is 
started. 

a 

A , B  

B 
d* 
drain, dmax 
F °bs, F calc 

Y 
g 

G 

1. Notation 

Atomic radius 
Real and imaginary parts of a structure 
factor 
Temperature factor 
Reciprocal-space distance from origin 
Reciprocal-space resolution limits 
Observed and calculated structure factors 
Form factor 
Scattering factor with thermal motion, 
g = f(d*)exp(-Bd*2/4) 
Fourier transform of a solid sphere 

* Current address. 

h*  
h 
H 
k 

M 
R 

~'~geom 

7~p 

T~X-ray 

R COYIV 

RED 
p ~  

r 

I n a . x  
rcalc 

max 
rref 

Pm 
Pc 

Po 
S 

T 
w 
Z 

Reciprocal-space distance 
Reflection index 
Total number of reflections 
Scaling constant (reciprocal space) or 
threshold (real space) 
Number of atoms 
Overall residual minimized in least 
squares 
Residual difference between model and 
ideal stereochemistry 
Residual difference between observed 
and calculated electron density 
Residual difference between observed 
and calculated structure factors 
Conventional reciprocal-space R factor 
Real-space R factor 
Reciprocal-space free R factor (Briinger, 
1992) 
Radial distance from the center of an 
atom 
Maximum r for calculation of electron 
density 
Maximum r for calculation of deriva- 
tives 
Electron density for the mth atom 
Electron density calculated from all 
atoms of a model 
Observed electron density 
Scale constant to bring Po to an 
absolute scale 
Generic Fourier transform 
Figure of merit 
Number of electrons in an atom 

2. Introduction 

Although real-space methods of refinement were ap- 
plied successfully to some of the first protein struc- 
tures (Diamond, 1974; Deisenhofer & Steigemann, 1975; 
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